Crisi di Salinità del Messiniano

Il Messiniano, nella scala geologica dei tempi, è un piano dell’epoca del Miocene e si estende tra i 7 e i 5 milioni di anni fa.

L’evento più significativo registrato in questo tempo geologico è la Crisi di Salinità del Messiniano avvenuta 5,6 milioni di anni fa nel corso della quale le acque del mar Mediterraneo evaporarono quasi completamente, a causa della chiusura dello Stretto di Gibilterra, trasformandosi così in una enorme conca quasi asciutta.

A questo evento geologico sono legate le evaporiti, rocce sedimentarie costituite da sali minerali precipitati da una soluzione per evaporazione del solvente, nel caso specifico per evaporazione dell’acqua di mare.

I principali minerali che costituiscono queste rocce sono il gesso, l’anidrite ed il salgemma e li troviamo in quelli che vengono considerati bacini evaporitici.

In Calabria si trovano nella stretta di Catanzaro, Marcellinara, Crotone, Rossano, Sibari e Benestare.

Il più grande bacino evaporitico è quello di Crotone, – già trattato nel precedente articolo – , in cui l’evidenza di rocce evaporitiche è legata alla presenza di salgemma e soprattutto alla formazione dei Diapiri Salini affioranti nella zona di Zinga, frazione di Casabona (KR).

 

Cosa sono i Diapiri Salini?

Il termine diapiro deriva da una parola greca che significa “perforare”.

Queste masse di salgemma possono assumere la forma di colonne e sono dette in tal caso duomi o cupole saline, ma il termine diapiro è quello più utilizzato.

I diapiri possono essere considerati quindi delle rocce evaporitiche, meno dense rispetto alle altre rocce circostanti, che salgono all’interno della crosta a causa di differenza di densità aiutati anche da movimenti tettonici, legati alla presenza di faglie, di tipo compressivo, cioè un qualcosa che comprime e li aiuta a risalire in superficie.

Li troviamo nella zona di Zinga frazione di Casabona, in località Russomanno nella splendida Valle del fiume Vitravo e a Verzino nella zona di Vallone Cufalo, con qualche altra presenza nel territorio di Castelsilano.

Questi depositi di sale derivano da precipitazione chimica e sono costituiti in prevalenza da cloruro di sodio (salgemma) e si formano per evaporazione in bacini marini chiusi o semichiusi, come appunto il Bacino di Crotone.

Il salgemma, dopo la sua deposizione, nel corso della storia geologica, viene coperto da altri sedimenti e questi a loro volta sono progressivamente seppelliti sotto altri sedimenti, per cui si compattano e subiscono un aumento di densità, che in genere raggiunge valori compresi tra 2,4 e 2,7 g/cm3. Il salgemma, oltre a essere più leggero delle rocce circostanti, è duttile e questo fa sì che possa deformarsi plasticamente: sottoposto al carico non uniformemente distribuito dei sedimenti, il sale fluisce lateralmente e verso l’alto, formando un’alternanza caratteristica di dorsali e depressioni.

Il geosito di Zinga è unico in tutta Europa, soprattutto per la sua estensione.

 

Fig. 2 – I Diapiri Salini nel Bacino di Crotone (Lugli Et Al., 2007).

 

Perché è unico il geosito di Zinga?

La zona dove affiorano i Diapiri Salini di Zinga è stata studiata ed è tuttora in fase di studio perché sono state rilevate molte peculiarità all’interno delle rocce di sale.

È proprio grazie a questi diapiri che la comunità scientifica è venuta a conoscenza della salinità e temperatura delle acque del Mar Mediterraneo nel Messiniano.

Tutto questo grazie a delle ricerche condotte negli anni da numerosi esperti, tra cui i lavori del prof. Dominici e della Dott.essa Cipriani del Dipartimento di Biologia, Ecologia e Scienze della Terra dell’Università della Calabria.

L’ultima ricerca condotta, infatti, ha evidenziato la presenza di inclusioni fluide, vere e proprie bolle d’acqua, rimaste intrappolate nei cristalli di sale dove all’interno sono state trovate tracce di microrganismi che potrebbero essere riportati in vita.

Si tratta di microalghe verdi, blu e rosse che popolavano il mediterraneo 5,6 milioni di anni fa. Studi pubblicati in riviste internazionali e che possono essere consultati nella parte dedicata alla bibliografia dove abbiamo indicato i titoli.

Fig. 3 – Diapiro Salino sul fiume Vitravo

 

Fig. 4 – Diapiro Salino su Monte Russomanno

 

Dott. Mario Cimieri

in Collaborazione con

il Dott. Matteo Montesani

______________________________

Bibliografia

S. Lugli, R. Dominici, M. Barone, E. Costa & C. Cavozzi – Messinian halite and residual facies in the Crotone basin (Calabria, Italy).

From: SCHREIBER, B. C., LUGLI, S. & BA˛BEL, M. (eds) Evaporites Through Space and Time. Geological Society, London, Special Publications, 285, 169–178. DOI: 10.1144/SP285.10 0305-8719/07/$15.00 # The Geological Society of London 2007.

Mirko Barone, Rocco Dominici, Francesco Muto and Salvatore Critelli – Detrital modes in a late miocene wedge-top basin, northeastern Calabria, Italy: compositional record of wedge-top partitioning. Journal of Sedimentary Research, 2008, v. 78, 693–711.

M. Cipriani, A. Costanzo, M. Feely, R. Dominici – The Messinian halite deposit in the Crotone basin, Italy: new perspectives from fluid inclusion studies.

La forma della Terra

Introduzione

L’argomento di questo articolo è la Geodesia, ovvero lo studio e la rappresentazione della Terra.

È davvero difficile accettare che in una realtà tecnologicamente avanzata come quella dei giorni nostri esistano i terrapiattisti, gente che associa la forma del nostro pianeta a una pizza gigante.

Secondo Gianluca Ranzini, astrofisico e giornalista della rivista Focus, il terrapiattismo moderno deve le sue origini a un controverso personaggio dell’Inghilterra del XIX secolo di nome Samuel Birley Rowbotham, che provava con i suoi esperimenti a dimostrare che la Terra è piatta.

La Flat Earth Society, società della terra piatta, conta qualche migliaio di iscritti nel globo (come loro stessi affermano, senza cogliere l’ironia di tale affermazione).

La democrazia e il progresso tecnologico sono state sicuramente due grandi conquiste dell’umanità; nonostante ciò, ogni medaglia ha due facce e la faccia oscura di questa medaglia è correlata al fatto che le suddette conquiste hanno consentito di portare a tutti quanti (proprio a tutti) le proprie idee a una platea mondiale.

In questo scenario è facilitata fortemente la condivisione di fake news e la diffusione a macchia d’olio di teorie prive di alcuna validità scientifica come per l’appunto il terrapiattismo; quest’ultimo, ahimè, è stato anche valorizzato e portato avanti da personaggi famosi e influenti e di riflesso anche da molti dei loro fan.

Davanti a una persona che sostiene il terrapiattismo si potrebbe anche sorridere e far finta di nulla; tuttavia, è comunque utile dissipare ogni dubbio che possa sorgere a riguardo.

Alla luce di questo, l’obiettivo dell’intervento di oggi sarà quello di dare alcune indicazioni scientificamente riconosciute e approvate sulla forma della Terra aiutandoci con alcuni esempi[1].

Per la stesura del presente articolo, dal momento che concerne un campo tanto ostico quanto importante, ho richiesto la collaborazione del Dr. Innocenzo De Marco, fisico e dottorando presso l’Università di Leeds e ricercatore presso Toshiba Europe Ltd, il quale ha collaborato con me nella stesura dell’intervento.

___________________________

[1] Al fine di rendere l’articolo accessibile e comprensibile a tutti, verranno schematizzati i risultati delle dimostrazioni scientifiche alle quali si è arrivati nel corso dei secoli, senza riportare i complessi calcoli matematici che hanno condotto alle dimostrazioni di cui sopra.

_

La forma della Terra

L’idea che la Terra sia piatta è ragionevole, a prima vista: le enormi dimensioni del pianeta rendono la curvatura praticamente invisibile all’occhio umano. Una fotocamera con zoom sufficientemente potente può scattare una foto a un pallone da basket abbastanza ravvicinata da farne sembrare piatta la superficie.

Che la Chiesa e la società nel Medioevo credessero alla Terra piatta è un falso storico: già nell’antica Grecia, la concezione della Terra piatta era stata abbandonata.

Platone e Aristotele scrivevano che la forma della Terra deve essere sferica, per rimuovere l’assunzione che ci sia qualcosa a sostenerla nello spazio.

Altre osservazioni sono utili a mostrare che la Terra non è piatta: l’esempio più classico è una nave che si avvicina dall’orizzonte.

Se la Terra fosse piatta, la nave comparirebbe come un puntino che si ingrandisce man mano che si avvicina.

Quello che invece succede è che sono gli alberi e le vele della nave ad essere avvistati per primi, in quanto più alti e quindi in grado di “superare” la curvatura terrestre prima del resto della nave.

 

 

Una nave che scompare all’orizzonte in una Terra sferica (okpedia.it).

 

Eratostene fu il primo a misurare con sufficiente precisione la circonferenza della Terra.

Durante lo stesso giorno, Eratostene notò che il Sole proiettava un’ombra diversa dello stesso bastone in due città diverse. Conoscendo la lunghezza del bastone e misurando le due diverse ombre, Eratostene riuscì a calcolare la circonferenza della Terra ottenendo un valore molto vicino a quello considerato corretto oggi.

In seguito, l’avanzare della Scienza portò a ulteriori raffinamenti nella rappresentazione della Terra.

A partire dal XVII secolo, gli studi di Newton e Huygens portarono ad attribuire alla terra una forma ellissoidica appiattita lungo l’asse di rotazione terrestre; tale forma nel complesso fu definita “ellissoide oblato”. L’idea alla base è che l’equatore “ruota di più” rispetto ai poli, essendo più lontano dall’asse di rotazione.

Per questo motivo, la Terra si è “schiacciata” ai poli durante la sua formazione. Nel 1700 il matematico e astronomo francese Clairaut descrisse una forma geometrica che approssimava molto bene la forma della terra, ossia una figura solida appartenente alla famiglia delle quadratiche, definita “ellissoide di rotazione”, simile all’ellissoide oblato di Newton e Huygens.

L’ellissoide di rotazione proposto da Clairaut era caratterizzato da un semiasse maggiore corrispondente all’equatore terrestre e da uno schiacciamento in corrispondenza dei due poli; questo peculiare ellissoide di rotazione fu definito “sferoide”.

Oggi, dopo secoli di studi e complessi calcoli, si è arrivati ad affermare che la migliore approssimazione della forma della terra è un “geoide”, un particolare solido definito come una superficie equipotenziale (ovvero una superficie su cui l’accelerazione di gravità è costante) passante per il livello medio del mare.

 

Rappresentazione della forma della terra con geoide o ellissoide (openoikos.com).

 

La superficie del geoide presenta alcune ondulazioni in più rispetto allo sferoide di Clairaut, dovute alle diverse concentrazioni e densità di materiali distribuiti sulla superficie della Terra, ma non si discosta sensibilmente da quest’ultimo (Gasparini e Mantovani, 1981[2]); di conseguenza, si può considerare lo sferoide di Clairaut come modello teorico della terra sul quale effettuare calcoli.

______________________________

[2] <<Fisica della terra solida>>; Gasparini P. & Mantovani M.S.M, 1981

 

_

Considerazioni conclusive

L’obiettivo di questo articolo è stato quello di prendere, metaforicamente, una piccolissima parte della punta di un grande Iceberg di studi e dimostrazioni condotte nel corso dei secoli fino ad oggi e sintetizzarlo in termini semplici e accessibili a tutti; già dalle poche nozioni ivi riportate (dimostrate scientificamente nel corso degli anni), risulta piuttosto difficile l’accostamento del pianeta sul quale viviamo a una qualsiasi forma piatta.

Per arrivare a definire in modo esatto la forma della Terra sono stati necessari secoli di misure, calcoli complessi, studi scientifici di dettaglio che sono stati rivisti e migliorati anno dopo anno; sono stati scritti trattati, libri e manuali e si hanno numerose pubblicazioni su prestigiose riviste scientifiche. Tutto ciò è stato il frutto del lavoro di scienziati che hanno dedicato la loro vita a questo, grandi menti che hanno investito buona parte del loro tempo (se non tutto) e che ancora al giorno d’oggi continuano a perfezionare il modello geoidale rappresentante la terra.

Sicuramente questi non avranno il tempo materiale per confutare sui Social Network improbabili teorie terrapiattiste, quindi è compito di ciascuno di noi affidarsi sempre a fonti attendibili e scientificamente riconosciute.

Tuttavia, anche senza scomodare geometrie non euclidee e meccanica rotazionale, accorgersi della curvatura della Terra è semplice. Basta aprire gli occhi e osservare.

 

Dott. Geol. Matteo Montesani

Dott. Innocenzo De Marco

 

Caratteri geologici del Bacino di Crotone

Il Bacino di Crotone

Il bacino di Crotone è ubicato nel settore nord orientale della Calabria, lungo il versante ionico ed è composto prevalentemente da rocce sedimentarie.

Può essere definito come un depocentro (zona di massima deposizione), riempito da sedimenti, che variano dall’ambiente continentale al marino profondo con un’età compresa tra il Serravalliano (c.a. 13 Milioni di anni fa) ed il Pleistocene (c.a. 2.5 Milioni di anni fa).

A livello geologico la zona è stata interpretata come una porzione di un ampio bacino denominato di “avanarco”, cioè un qualcosa che si è formato tra un originario arco magmatico, composto per l’appunto da vulcani ed un complesso di subduzione.

In parole povere si tratta di un’area della superficie terrestre formatasi per effetto della subsidenza, in cui si sono successivamente accumulati i sedimenti.

La subsidenza, infatti, essendo il motore di tutti i bacini sedimentari, vede la superficie topografica abbassarsi e sprofondare, rispetto alle zone circostanti, fornendo continuamente nuovo spazio per l’accumulo di altri sedimenti.

Fig.1: Schema geologico semplificato dell’Arco Calabro con la posizione del Bacino di Crotone (Massari et alii, 2002; Zecchin et alii, 2003)

 

Perché è importante il Bacino di Crotone?

Il Bacino di Crotone ha da sempre destato notevole interesse nella comunità scientifica per il grosso potenziale di geo-risorse sfruttabili; dagli idrocarburi gassosi dei Campi Luna ed Hera Lacinia a largo di Crotone, allo sfruttamento di salgemma con le miniere di Belvedere di Spinello e Zinga di Casabona fino ad arrivare alle miniere di zolfo di Strongoli.

È stato studiato in gran dettaglio sin dalla fine dell’800 da numerosi esperti del settore che hanno dato un contributo fondamentale per le conoscenze geologiche, tettoniche e stratigrafiche.

L’area del Bacino di Crotone è stata analizzata e investigata sia per scopi industriali, ai fini dello sfruttamento di idrocarburi e di salgemma, legato alla crisi di salinità del Messiniano[1], sia ai fini di previsione e prevenzione dei rischi naturali in quanto è presente un corpo evaporitico.

La presenza di risorse sfruttabili nell’offshore crotonese è proprio correlata al salgemma, il quale riesce a creare una condizione ideale e naturale per la formazione di idrocarburi.

————————-

[1] L’argomento relativo alla crisi di salinità del Messiniano verrà trattato con un grado di dettaglio maggiore nel corso dei prossimi articoli.

 

Attività Eni Agip nel Bacino di Crotone

Fin dal 1952 l’Agip, oggi Ente Nazionale degli Idrocarburi (Eni), ha svolto attività esplorative in Calabria per la ricerca di idrocarburi.

Un’attività che ha portato ad una più approfondita conoscenza della regione da un punto di vista di geo-risorse, Dalle analisi effettuate è stata evidenziata la presenza di idrocarburi allo stato gassoso (circa il 99% da metano) mentre dall’analisi stratigrafica invece, si è visto che provengono da tre principali “reservoir” (serbatoi) contenuti nella fase pre-evaporitica, cioè prima dello strato che contraddistingue le rocce evaporitiche del crotonese (salgemma, gessi) con la scoperta, quindi, degli attuali giacimenti Luna ed Hera Lacinia a largo di Crotone.

Proprio nella zona di Crotone sono stati realizzati i pozzi Hera Lacinia 1 (1975), che ha rinvenuto strati gassiferi e nell’anno seguente altri due pozzi i quali accertavano che la mineralizzazione si estendeva anche nell’antistante offshore.

A terra veniva, invece, realizzato il pozzo Vitravo 1 (1976) risultato però sterile.

 

Fig.2: Le piattaforme di Luna ed Hera Lacinia a largo di Crotone

 

Nell’offshore ionico, l’Eni ha attualmente in esercizio gli impianti di produzione relativi al giacimento gassifero “Luna”.

Si è deciso lo sfruttamento del giacimento per mezzo di 12 pozzi, che sono stati eseguiti da una piattaforma fissa offshore, ubicata al largo di Crotone, su un fondale con una profondità d’acqua di 70 m, distante 7 km dalla costa con una profondità verticale dei pozzi di 1900 m.

Il Bacino di Crotone è sede di accumuli di gas già scoperti nei giacimenti Luna, Hera Lacinia e Lavinia.

 

Dott. Mario Cimieri

 

Bibliografia

Agip S.p.a. (1977) – Nota sulla ricerca petrolifera e sulla coltivazione dei giacimenti di idrocarburi nell’Italia Meridionale.

Massari F., Rio D., Sgavetti M., Prosser G., D’Alessandro A., Asioli A., Capraro L., Fornaciari E., and Tateo F. (2002) –  Interplay between tectonics and glacio-eustasy: Pleistocene succession of the Crotone Basin, Calabria (Southern Italy). Geological Society of American Bulletin, v. 114, p. 1183-1209.

Zecchin M., Massari F, Mellere D. and Prosser G. (2003) – Architectural styles of prograding  wedges in a tectonically active setting, Crotone Basin, Southern Italy. Journal of Geological Society of London, v. 160, p. 863-880

Zecchin M., Praeg D., Ceramicola S., Muto F. (2015) – Onshore to offshore correlation of regional unconformities in the Plio-Pleistocene sedimentary succession of the Calabrian Arc (central Mediterranean). Earth Scienze Reviews v. 142, p. 60-78

 

Processi pedogenetici e movimenti franosi

1.1     Cenni sulla pedogenesi

Una parte molto importante e interessante della Geologia, spesso poco conosciuta e approfondita, è la Pedologia.

In termini estremamente semplici, quest’ultima si occupa dello studio della pedogenesi, ossia di quell’insieme di processi di alterazione chimico-fisica, mineralogica e geotecnica che coinvolgono una roccia madre[1] di partenza, portando gradualmente alla formazione del “suolo”; tali processi sono indotti da fattori fisici, chimici e biologici ed è importante specificare che ogni fattore non è mai considerato in modo indipendente, bensì in stretto legame con tutti gli altri.

Con l’avanzare dell’azione dei processi pedogenetici, la roccia madre tende a perdere parte dei suoi caratteri originari, trasformandosi gradualmente, a partire dalla sua porzione più superficiale, in un suolo di neoformazione che avrà caratteristiche diverse rispetto alla roccia inalterata di partenza.

Il suolo può essere osservato sul campo sotto forma di una serie di superfici di alterazione ad andamento orizzontale-suborizzontale, che dal substrato inalterato (roccia madre) si sviluppano verso l’alto e che tecnicamente prendono il nome di “orizzonti pedologici”, i quali possono presentare caratteristiche simili o essere molto diversi tra di loro e che nel complesso costituiscono un “profilo pedologico”.

Fig. 1: Esempio di un profilo pedologico caratterizzato da 3 orizzonti pedologici (Montesani M., 2017).

 

La situazione geologica descritta poc’anzi, talvolta può rappresentare uno scenario di criticità per l’innesco di movimenti franosi superficiali, come verrà spiegato in dettaglio nel paragrafo successivo.

[1] In questo articolo, per una questione di semplicità, verrà utilizzato genericamente il termine roccia madre associato ai processi pedogenetici, in realtà bisognerebbe parlare genericamente di “materiale parentale”, in quanto i processi pedogenetici non agiscono esclusivamente sulle rocce, ma possono agire anche su altre tipologie di materiali.

 

 

 

1.2    Processi pedogenetici e frane superficiali

 

Gli effetti dei processi pedogenetici sulle rocce come fattori predisponenti, e talvolta scatenanti, di numerose frane superficiali, sono stati analizzati in diversi lavori: Cascini et Al. (2015), hanno analizzato numerose frane superficiali localizzate nella Catena Costiera, nel Massiccio della Sila e nel Graben di Catanzaro, impostate su successioni limoso-argillose o argilloso-limose, sulle quali sono stati individuati profili pedologici con spessori medi di circa 3 metri.

Dal suddetto lavoro è emerso che molte delle superfici di distacco delle frane superficiali, individuate a profondità comprese tra 1-3 metri, sono state precedute dall’apertura di fratture nei profili pedologici, con conseguente evoluzione del fenomeno franoso a seguito dell’infiltrazione di acqua lungo le fratture.

I dati geotecnici riportati nel lavoro, hanno inoltre evidenziato sostanziali differenze, in termini di valori di resistenza al taglio, tra il materiale parentale e i profili di alterazione e anche tra gli orizzonti pedologici costituenti i profili di alterazione.

 

Fig. 2: Movimento franoso superficiale che ha interessato una copertura pedogenetica che si è sviluppata su materiale parentale argilloso (Cascini et Al., 2015).

 

La pedogenesi ha avuto un ruolo chiave anche in un evento franoso catastrofico, come quello che il 5 maggio 1998 ha coinvolto gli abitati di Sarno, Quindici, Siano, Bracigliano e S. Felice a Cancello (Napoli), causando 161 vittime; a tal proposito, nei lavori di Basile et Al. (2003) e Terribile et Al. (2007), è stato messo in evidenza il ruolo chiave che hanno avuto i suoli con proprietà andiche (Andosuoli), in relazione all’innesco del movimento franoso.

Gli Andosuoli presentano proprietà specifiche quali tissotropia, alta capacità di ritenzione idrica, consistenza friabile, elevato contenuto di materia organica ed elevata microporosità, un insieme di proprietà che rendono nel complesso questi suoli particolarmente fertili e soprattutto molto vulnerabili all’innesco di movimenti franosi (Terribile et Al.,2007).

Nello specifico, dai suddetti lavori è emerso che l’innesco dei movimenti franosi si è avuto in seguito alla formazione di superfici di distacco all’interfaccia tra orizzonti pedogenetici diversi, in particolare caratterizzati da importanti variazioni delle proprietà idrauliche con la profondità.

Infine, la ricerca svolta nel corso del mio lavoro di tesi Magistrale (Montesani M.,2017), ha permesso di mettere in atto uno studio integrato a carattere pedologico, chimico-fisico, mineralogico e geotecnico, condotto in località “Dottorella” nel comune di Mileto (Vibo Valentia), un’area interessata da importanti fenomeni franosi che spesso provocano notevoli disagi, in quanto la zona è percorsa da diverse arterie stradali principali ed è inoltre servita da una stazione delle Rete Ferroviaria Italiana.

Lo studio si è rivelato uno strumento molto potente al fine di mettere in evidenza il ruolo che hanno avuto i processi pedogenetici nella predisposizione al dissesto dell’area e nel meccanismo di innesco di una frana superficiale che ha avuto luogo la notte tra il 15 e il 16 marzo 2013; in particolare, volendo sintetizzare al massimo, dallo studio è emerso che la pedogenesi tende a rendere il materiale maggiormente mobilizzabile sotto l’azione dei processi erosivi, predisponendo fortemente l’area all’innesco di movimenti franosi superficiali, considerati anche i forti apporti pluviometrici che si hanno nel corso delle stagioni invernali, sotto l’influenza del clima di tipo Mediterraneo.

 


Bibliografia

 

Basile A., Mele G., Terribile F.,. «Soil hydraulic behaviour of a selected benchmark soil involved in the landslide of Sarno 1998.» Geoderma 117 (2003): 331-346.

Cascini L., Ciurleo M., Di Nocera S.,Gullà G,. «A new-old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy.» Geomorphology 241 (2015): 371-381.

Montesani M. «Caratterizzazione pedologica, chimico-fisica, mineralogica e geotecnica della frana in località “Dottorella” di Mileto (Vibo Valentia).» Tesi di Laurea Magistrale in Scienze Geologiche, 2017.

Terribile F., Basile A., De Mascellis R., Iamarino M., Magliulo P., Pepe S., Vingiani S. «Landslide processes and andosols: the case study of the Campania region, Italy.» Soils of Volcanic Regions in Europe, 2007: 545-563.

———————————————————–

Dott. Geol. Matteo Montesani

Maltempo, nubifragio sul vibonese.

In serata le piogge sono diventate molto intense a ridosso del vibonese, dove si sono registrati allagamenti e frane.

Il forte maltempo sulla Calabria centro meridionale, è stato prodotto dalla presenza di correnti umide da ponente, le quali,  passando sul mar Tirreno,  hanno apportato umidità a terra, dove si è scaricata entrando in contrasto sia con l’orografia presente, che con le correnti in quota provenienti da Nord.

Un effetto che ha caricato fortemente l’instabilità sul vibonese, dove si sono scaricate ingenti piogge in uno spazio abbastanza ristretto e in poco tempo.

Le stazioni meteorologiche segnano oltre 70mm (l/m2) in meno di 4 ore, portando rapidamente alla saturazione dei terreni e alla conseguente formazione di allagamenti e smottamenti.

Fig.1 – Mappa delle stazioni pluviometriche – mappa by meteonetwork, stazioni Arpacal

Dalla figura 1 possiamo notare come le piogge si siano concentrate lungo una fascia compresa tra Maierato e Gioia Tauro

Nei video e nelle immagini qui di seguito, possiamo vedere delle testimonianze arrivare direttamente di luoghi interessati.

[Immagini realizzate da Piero e Giuseppe Cannizaro]

.

.

 

.

Riportiamo in conclusione quanto descritto dai giornali locali:

Da ilvibonese.it

“Mezzi già al lavoro – nonostante la pioggia battente – per rimuovere l’ingente quantitativo di fango e detriti che ha invaso, in serata, l’unica via d’accesso e il piazzale dello stabilimento Giacinto Callipo Conserve alimentari Spa, dove si produce il rinomato Tonno Callipo. Le piogge torrenziali che si sono abbattute su buona parte del territorio provinciale vibonese, dalla costa all’entroterra, non hanno dunque risparmiato neppure l’area dell’Angitolano, né la ex Statale 110 che si presenza allagata in vari punti e interessata da vari smottamenti che ne ostruiscono il transito”.

Qui l’articolo completo

https://www.ilvibonese.it/cronaca/64954-maltempo-vibonese-piazzale-stabilimento-callipo-invaso-fango-detriti-video/

Ass. Meteopresila.

Calabria. Ondata di freddo del 25.03.2020

Le correnti fredde arrivate nelle ultime ore hanno prodotto una nevicata molto interessante sul territorio silano e presilano.

Ecco un po’ di foto e video raccolte stamattina.

Le nevicate sono scese anche sulla Città di Cosenza, grazie alla formazione di uno strato di aria fredda che ha mantenuto la colonna d’aria adatta alla sopravvivenza dei fiocchi di neve fino al suolo.

Qui possiamo vedere alcune testimonianze.

 

Queste invece sono immagini raccolte dalle webcam sulla Sila e sulla presila, dove possiamo osservare l’accumulo al suolo della neve

 

 

Nonostante il blocco totale, alcuni operatori devono garantire vari servizi per la popolazione, da loro abbiamo ricevuto la testimonianza video e fotografica della situazione in Sila Piccola e precisamente in Loc. Ciricilla nel comune di Taverna Cz.

 

Contributi video sempre da Ciricilla.

Commento

Dopo la mattinata andata perfettamente come da previsione, concentriamoci ora sulla seconda fase del maltempo.

FORTE PEGGIORAMENTO SULLE IONICHE E RILIEVI ESPOSTI.

La quota neve è ancora in aumento, sulla Sila piccola al momento sui 1000-1100 (e salirà ancora) ma con precipitazioni deboli.

Nel corso del pomeriggio, e ancor di più tra la sera e la notte ci aspetta una fase di FORTE maltempo.

Il classico maltempo da scirocco con tanta pioggia, locali nubifragi, vento e mareggiate sulle coste ioniche più esposte alle correnti.

Per maggiori dettagli riportiamo ad nostri interventi in merito:

Mercoledì 25 Marzo 2020

 

Giovedì 26 Marzo 2020

Gli accumuli più elevati, che potrebbero superare anche i 200mm, si avranno sui rilievi esposti dell’Aspomonte, Serre e appunto della nostra Sila e presila Piccola.

La situazione si farà molto pesante in alcune aree. Altra occasione per STARE A CASA.

Intervento realizzato in collaborazione con

Domenico Talarico

Severa ondata di maltempo in arrivo!

<<Una robusta depressione attualmente ubicata nel deserto marocchino, sta richiamando una notevole quantità di aria gelida, che dalla Russia, ha ormai invaso anche il Sud-Italia, apportando un deciso crollo termico, su valori spiccatamente invernali>>.

Il contrasto tra l’aria gelida artica e quella tiepida desertica, fornirà ulteriore energia al sistema depressionario, il quale nelle prossime ore inizierà a risalire il deserto sahariano.

Dall’immagine allegata, osserviamo l’evoluzione temporale e spaziale della depressione.

Fig.1 -Sistema frontale previsto tra il 25 sera e il 26 Mattina, minimo con profondità da 991 hpa sul Canale di Sicilia.

 

Notiamo come entro domani, la stessa avrà ormai raggiunto l’Atlante algerino (qui subirà un’ulteriore instabilizzazione e si caricherà di pulviscolo sahariano), per poi approdare lungo il mar Jonio tra mercoledì e giovedì, apportando notevoli fenomeni di maltempo.

Il Sud-Italia, (in particolare Sicilia e Calabria jonica) sarà area di scontro tra l’aria molto fredda e quella più mite, ne conseguiranno ore di intenso maltempo con temporali abbondanti, grandinate e forti raffiche di vento.

Fig.2 – Rappresentazione del movimento della Pressione su scala Europe, periodo tra oggi 23 Marzo e Venerdì 27 Marzo. Credit GFS by Meteociel.fr

Mercoledì sera, (complice la grande quantità di aria fredda riversatasi al suolo), tornerà la neve (anche abbondante) a partire da quote medio-basse, poi man mano che passeranno le ore, lo scirocco spirerà sempre più forte, garantendo pioggia abbondante anche lungo le quote di montagna.

Fig.3 – Rappresentazione della distribuzione delle piogge in arrivo, periodo tra oggi 23 Marzo e Venerdì 27 Marzo. Credit GFS by Meteociel.fr

In sintesi, per il nostro territorio:

#Domani: Giornata serena o poco nuvolosa, ventilato, clima gelido con temperature molto basse.

#Mercoledì: Giornata molto nuvolosa e fredda con qualche fiocco di neve al mattino; peggiora entro sera con rovesci di neve e grandine, temperature in graduale aumento entro notte.

#Giovedì: Temperature in forte rialzo con temporali molto abbondanti, (specie sui rilievi, con picchi di 200 mm di pioggia in 24 ore).

Attenzione -> Elevato il rischio di nubifragi.

#Venerdì: Ancora instabile e umido, ma con fenomeni in netta attenuazione.

Seguiranno dettagli.

Intervento realizzato da Umberto Rossini

Colpo di coda invernale. Torna il freddo e arriva il maltempo

Prime analisi sulla nuova settimana, forse la più movimentata da dicembre ad oggi.

Sul bordo dell’anticiclone che punta sulla penisola Scandinava, scivolerà una massa d’aria molto fredda di matrice artico continentale che in modo retrogrado interesserà buona parte dell’Europa.

Il centro-nord Italia avrà a che fare con temperature molto basse che garantiranno gelate e nevicate a quote bassissime.
Il sud Italia resterà ai margini ma avrà la sua dose di freddo, neve e pioggia.

Il freddo sarà più intenso sulla Calabria settentrionale dove le nevicate potrebbero scendere abbastanza di altitudine; Calabria centrale e meridionale più ai margini.

Figura 1 – Rappresentazione dell’arai fredda in arrivo, periodo tra oggi 21 Marzo e Mercoledì 25 Marzo. Credit GFS by Meteociel.fr

Si parte domani:

DOMENICA. Una blanda depressione afro-mediterranea spingerà correnti umide di scirocco, tanta nuvolosità, venti da sud-est moderati ma deboli piogge più probabili al pomeriggio specie su bassa Calabria e a ridosso dei rilievi.

LUNEDÌ. La depressione sarà ancora attiva seppur in allontanamento verso levante ma determinerà ancora instabilità sull’intera regione con pioggia sparsa nuovamente più probabile al pomeriggio e alla sera quando inizierà l’aflusso dell’aria artica con quota neve sulla Sila in lento ma costante calo. Nella notte tra lunedì e martedì non si escludono nevicate fin sui 400-500mt su calabria settentrionale e fin su 800mt su Calabria centrale

MARTEDÌ. Freddo in accentuazione, e precipitazioni specie nella prima metà del giorno con quota neve in leggero calo.

MERCOLEDÌ richiamo mite, con tanto nuovo maltempo e tanta neve sulla Sila con quota neve inizialmente bassa ma in rapido aumento. Possibili forti precipitazioni sulla regione, specie sulle aree ioniche.

Figura 2 – Rappresentazione della distribuzione delle piogge in arrivo, periodo tra oggi 21 Marzo e Mercoledì 25 Marzo. Credit GFS by Meteociel.fr

Ovviamente questa è la previsione in linea di massima. Si tornerà giorno per giorno nei dettagli.

Fig.3 – Andamento temperature e precipitazioni previste

MA Occhio alle sorprese e al maltempo.

Nel frattempo vi invito a STARE A CASA.

Intervento realizzato da Domenico Talarico

CoVid-19 e ambiente; una relazione particolare.

Approfittando della lunga quarantena, continuano gli approfondimenti da parte di Meteopresila, che provano a spiegare in modo semplice, la correlazione tra ambiente e fenomeni quotidiani.

In questo appuntamento andremo ad affrontare una notizia molto particolare, da interpretare sotto molti aspetti.

Da qualche giorno i giornali e le televisioni sottolineano che, date le quarantene imposte dai vari Governi nazionali (Cina in primis), i livelli di inquinamento dell’aria sono radicalmente scesi.
In quest’articolo proveremo ad analizzare e a spiegare quanto accade in questi giorni. Prima però si necessita di una breve spiegazione per capire il fenomeno.

Inquinamento atmosferico

Con il termine inquinamento atmosferico si intende la presenza nell’aria di sostanze che modificano la naturale composizione dell’atmosfera terrestre: 78% di azoto, 21% di ossigeno e 1% di argon e di “gas in traccia”, che comprendono anche tutte le sostanze cosiddette “inquinanti”.

Gli inquinanti si suddividono in primari, emessi direttamente in atmosfera, e secondari, formati in atmosfera per reazioni fisico-chimiche tra inquinanti primari.

L’origine di queste sostanze può essere naturale (eruzioni vulcaniche, erosione eolica) o antropica (attività produttive, combustioni).

Una volta immessi in atmosfera, gli inquinanti sono soggetti a fenomeni di dispersione, trasporto e trasformazione chimica; per tale motivo, la concentrazione degli inquinanti in aria cambia notevolmente nel tempo e nello spazio. (fonte ARPA Valle d’Aosta)

Fatta questa doverosa premessa, possiamo ora scendere brevemente nel dettaglio per definire quali sono i componenti primari di cui sentiamo parlare ogni giorno:

  • PM 2.5 – PM 10

Il particolato atmosferico è una miscela di sostanze organiche ed inorganiche, si tipo solido o liquido, che possono avere origine naturale, come ad esempio il polline, o natura antropica, derivante da attività industriali e dalle combustioni di carburanti di tipo carbonico, come il petrolio e i suoi derivati. La caratteristica principale delle particelle di tipo PM è la lunga permanenza in atmosferica e possono essere trasportate per lunghe distanze o resistere per lungo tempo in un posto specifico (come nella pianura Padana);

  • Ossidi di azoto tipo Nox

L’azoto, combinandosi con l’ossigeno presente nell’atmosfera, genera diverse tipologie di componenti, tra cui il biossido di azoto NO2. Si forma in qualsiasi processo di combustione dove si impiega l’aria come comburente. La reazione del composto NO con la radiazione solare contribuisce alla formazione degli inquinanti come l’ozono. Anche in questo caso l’origine può essere naturale, derivante dai batteri o da vulcani attivi, o antropica, derivante dalla lavorazione delle centrali termoelettriche o dal riscaldamento domestico;

  • Monossido di carbonio CO

Il monossido di carbonio è l’inquinante gassoso più abbondante in atmosfera. Si tratta di un inquinante primario che ha una lunga permanenza in atmosfera (fino a quattro-sei mesi). Esso proviene dalla combustione di materiali organici, nel caso in cui la quantità di ossigeno a disposizione è insufficiente.

Le sorgenti principali di produzione della CO sono il traffico urbano, le industrie di raffinerie di petrolio e fonderie, smaltimento dei rifiuti e, soprattutto, si sviluppa in forti quantità durante gli incendi boschivi.

I componenti appena descritti sono le forme principali di cui sentiamo parlare ogni giorno. La reazione tra di loro genera vari composti, che possono andare ad intaccare l’atmosferica (come nel caso del buco dell’ozono, ossia la riduzione dello strato di ozono atmosferico) o creare barriere che possono modificare l’ambiente (come nel caso dei gas serra, condensazione di gas che limitano il naturale percorso della luce e dell’aria, trattenendo la componente dell’irraggiamento e modificando temperatura e clima in specifiche zone).

Finita questa doverosa premessa, entriamo nello specifico della notizia. In uno studio pubblicato congiuntamente tra NASA, l’agenzia spaziale americana, e l’ESA, l’ente spaziale europeo, i valori di NOx e gli altri inquinanti è sceso drasticamente in tutto il mondo.

Il CoronaVirus e il blocco delle attività umane

Inquinamento Pianura Padana Immagini Aprile 2019 – l’immagine contiene un’elaborazione dei dati Copernicus Sentinel 2019, processati da ESA

Come rilevato infatti dalla rete di satelliti Sentinel, facenti parte del progetto Copernicus, progetto finanziato e realizzato dall’Unione europea, che dal 2014 monitora i cambiamenti climatici grazie appunto ad una rete di satelliti realizzati ad hoc; le zone che di solito presentano concentrazioni elevate, come la Pianura Padana e il nord della Cina, zona fortemente industrializzata, hanno raggiunto quantità di aria accettabili rispetto ai mesi precedenti.

Ricordiamo che ad inizio anno, nel Nord Italia si è vissuto il blocco totale dei mezzi fino alla categoria Euro 3 o 4 in base alle zone (le categorie sono definite in base alla quantità di inquinamento prodotto dai vari tipi di combustione sui mezzi di trasporto).

Nel Video di seguito possiamo vedere nel dettaglio proprio quanto descritto prima

https://www.esa.int/ESA_Multimedia/Videos/2020/03/Coronavirus_nitrogen_dioxide_emissions_drop_over_Italy

Questa è la chiara dimostrazione di come l’uomo sia artefice della gran parte dell’inquinamento atmosferico.

Nonostante l’applicazione di politiche internazionali volte alla riduzione dell’impiego di risorse per abbattere il consumo e l’inquinamento, come gli accordi di Parigi o il protocollo di Kyoto, finora non si erano mai registrati dei valori così drastici di abbassamento delle componenti inquinanti nell’aria.

Nei periodi di quarantena invece, quindi da fine gennaio ad oggi, con conseguenti mezzi fermi e trasporti ridotti, considerando inoltre la drastica riduzione del consumo delle risorse per la produzione di energia utile alle attività produttive e al riscaldamento degli ambienti (favoriti anche da un inverno con temperature più alte della media), in tutto il mondo l’abbassamento di questi valori è risultato molto evidente.

L’obiettivo del progetto di sviluppo sostenibile, organizzato dall’ONU nel 2015 ed avente 169 target da raggiungere entro il 2030, è proprio quello di arrivare ai valori registrati in questo mese.

Forse da questo enorme ostacolo che stiamo vivendo in questi giorni, riusciremo ad imparare una grande lezione.

Il mondo è malato, inquinato dalla mano dell’uomo.

Qui di seguito possiamo veder l’esempio Cinese, con effetti anche superiori rispetto al caso italiano.

Famosa mappa ritraente l’inquinamento da biossido d’azoto in Cina.

 

Vogliamo davvero continuare così?

Arrivederci al prossimo appuntamento da parte di Meteopresila

 

L’oscillazione Artica, il primo responsabile sul nostro inverno.

Proviamo a dare uno sguardo su quanto sta avvenendo lungo i cieli europei.

L’Artic Oscillation Index (AO), noto anche come Northern Hemisphere annular mode, è un indice su larga scala della variabilità climatica.

Quando l’AO è nella sua fase positiva, un anello di forti venti circolanti in senso antiorario intorno al Polo Nord confina l’aria più fredda nelle regioni polari (Vortice polare molto compatto, capace di scatenare diverse tempeste sulle nazioni oltralpe).

In tale situazione, la pressione a livello del mare alle alte latitudini è estremamente bassa (rafforzamento del vortice polare), mentre alle medie latitudini si ha un rafforzamento degli anticicloni.

Fig.1 – Immagine rappresentativa della AO

 

Questo è quanto sta avvenendo ormai da diversi giorni con un indice AO decisamente elevato (probabilmente da record in quanto mai registrato), con violente temereste che si abbattono sul nord-Europa e condizioni nettamente primaverili lungo le aree del Mediterraneo.

La situazione prevista per i prossimi giorni, (ci viene in ausilio il grafico), pare possa proseguire su questo trend addirittura con un indice AO estremamente elevato (fino a 8 unità).

Fig.2 – Grafico indice AO

Questo si tradurrà in nuove tempeste che potrebbero minacciare il nord-Europa e caldo anomalo che invece continuerà ad interessare le aree del sud-Europa.

Anche questo, è un ulteriore segnale, che unito alla diminuzione dei ghiacci dell’Antartico e dell’aumento progressivo dei gas serra, ci mostra quanto oramai il sistema climatico sia divenuto estremamente vulnerabile.

Siamo in corsa verso effetti sconosciuti del clima che inevitabilmente si traducono in una estremizzazione, sempre più evidente dei fenomeni meteorologici.

Fig. 3 – Andamento (Possibile) delle temperature dei prossimi 15 giorni

Per ora accontentiamoci di un veloce peggioramento nella metà della prossima settimana (Vedi Fig.4), poi l’alta pressione potrebbe riacquistare la sua egemonia, con condizioni di tempo stabile; aggravando in caso ulteriormente il problema della siccità.

1 2 3 4 5 6 15